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Abstract-The paper deals with the simplest “conjugated” boundary value problems of heat transfer 
in which heat conduction equations are solved in common for a body with heat sources and for a 
liquid flowing round the body. The method of the asymptotic solution of integral equations occurring 

in conjugated problems is presented. 

R&urn&-L’article traite des probltmes aux limites mixtes les plus simples pour le transport de 
chaleur, dans lesquels les equations de conduction sont resolues simultanement pour un corps 
comportant des sources de chaleur, et pour un liquide s’tcoulant autour du corps. 

On utilise la solution asymptotique des equations integrales mises en jeu dans ces problemes 
conjugues, 

Zusauunenfassung-Die Arbeit behandelt die einfachsten “konjugierten” Grenzwertprobleme des 
W%rmeiibergangs, bei welchen die Warmeleitungsgleichungen fi.ir den Kiirper mit Warmequellen und 
die ihn unstriimende Fliissigkeit gemeinsam gel&t werden k&men. Fur die Integralgleichungen, wie 
sie bei konjugierten Problemen auftreten, wird die Methode der asymptotischen Liisung angegeben. 

AEEOT~~E~--B pa6ore p3CCMaTpHB3IOTCH npocretirnrre <cCOIIpFfWZHHbIW npaenbre 3anauu 
TeIIJIOO6MeH3, B KOTOPbIX COBMWTHO p3IIWOTCH yp3BHeHHFi TeIIJIO~OBO~HOCTIl J(JIH TG'Ia C 

llCTO=iHIlKaMLl TerWIa H AJIFi ?KKEI~KOCTLI,O6TeKEtIOlq3t TWIO. &?BTCR MeTOg 3CEIMIITOTWR?CKOI-0 

peIIIeHIlfI HHTWp3JlbHbIX ypaBHCHE18, BOBHEIKEIIO~KXB COIIpfVK'&HHJJX 33J(ElWX. 

% v, 

NOMENCLATURE 

liquid temperature; 
solid temperature; 
surface temperature; 
normal temperature derivative on the 
body surface; 
longitudinal (along the solid) and 
normal velocity components, respec- 
tively ; 
thermal conductivity of liquid ; 
thermal conductivity of solid ; 
local heat transfer coefficient ; 
local Nusselt number ; 
local Reynolds number ; 
Prandtl number. 

1. INTRODUCTION 

THE local coefficient of heat transfer between a 
liquid and a body submerged in it is determined 
as PI, 

4 
a=t, 

where 

t, = wall temperature at the considered 
point, 

ta, = temperature of the incoming liquid, 
q = density of heat flow through the surface 

of the immersed body. 

Consequently, to determine a, temperature 
distribution in the liquid and the temperature 
on the surface of the immersed body must be 
known. 

As a rule, surface temperature of the im- 
mersed body-or heat flow through the surface- 
is considered a given function of co-ordinates 
[2] and, in particular, of t, = const. [3]. 

In some cases, the setting of the wall tempera- 
ture instead of its determination from the 
common solution of heat conduction equations 
for a liquid and an immersed body is unsatis- 
factory because of the following: 

(1) the wall temperature should not be assigned 
in the case of intense heat transfer, 
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(2) in the usual statement of the problem the 
solution does not contain the dependence 
on the properties of the immersed body- 
its thermal constants, size, etc., 

(3) an experimental definition of the wall 
temperature as a function of co-ordinates 
is a comparatively complicated problem, 
whereas it is easier to determine the 
distribution of sources in the body.* 

Therefore the problems, which we shall call 
“conjugated”, are formulated as fohows: the 
common solution of heat conduction equations 
for the body and the Iiquid round it is to be 
found. The velocity distribution in the moving 
liquid is found by solving the corresponding 
hydrodynamic problem. 

The present paper deals with the simplest 
conjugated problems. An exact solution of the 
problem on heat transfer in a slip flow is given 
in section 2. In section 3 the problem on heat 
transfer between a thin plate and a laminar 
boundary layer of incompressible liquid formed 
on it is solved. The method of the asymptotic 
solution of one class of singular integral equa- 
tions to which the problems of the considered 
type are reduced is given in the Appendix. 
Therefore, the same method can be applied to 
the solution of other conjugated problems. 

2. CONJUGATED PROBLEM OF HEAT TRANSFER 

IN SLIP FLOW 

Consider a liquid flowing with a constant 
velocity around a solid occupying the quandrant 
x > 0, y < 0 (see Fig. I). Assume that the 
component along the axis y is equal to zero. 
Moreover, heat conduction of the fluid along the 
axis x is neglected 

g < g, “boundary layer” 

Thus, the problem is formulated as follows: 
[8&y) is the fluid temperature, t(x,y) is the solid 
temperature]. 

*The method of determination of the heat transfer 
Coeacient proposed by Academician Luikov is based on 
it. 

Y 

-U 

For the liquid 

a0 a20 
Uz=Xp 

O<x<<, O<y<<. (1) 
For the solid 

a2t a3 
ax”+= - ; QcGYh 

O<X<W, -oo<y<o. (2) 

Restrictions on the function Q(x,y) to be made 
for existence of the solution will be found out 
below. 

On the solid-fluid surface we take:t 

Counting all the temperatures from the 
temperature of the incoming fluid one may take: 

ej,=;, = 0, (5) 

811/=cc = 0. (6) 

t Instead of condition (3) we may take a more general 
condition (temperature jump) 6’J,,_+0 - tl,,_o = f(x) 
where f(x) is the arbitrary given function. The solution 
of the problem with such a condition is quite analogous. 
For existence of the solution it is necessary that the 
~~fo~tion (I4a) for f(x) should exist and fsfa) 
should satisfy the same conditions as the function g(E) of 
(18. 
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Let 
t[,=, = 0. (7) 

The conjugated problem formulated is of 
interest when considering some cases of rarefied 
gas flow with slip near the wall* [4]. 

The system of equations (l-7) can also be 
treated as a boundary value problem for the 
equation of a mixed type with singular coeffici- 
ents: an elliptic equation at y < 0 and a para- 
bolic one at y > 0. The general theory of 
equations of a mixed type and especially the 
case of a hyperbolic-elliptic equation is con- 
sidered in [5]. 

For equation (1) with conditions (5, 6) and 
with regard to (4) it is easy to get 

[ 

Y2 

J 

sxp - 
e(x,Y> = a1 

4r(x - x’) 1 d/(x - x’) Ax’) dx’, (8) 
0 

at I 1 ae 
zj $/=-o = ii G l/=+. I = -P(X), 

J K = KJK,, a, = K 

(9) 

y = 0 in equations (8) and (lo), the system of 
integral equations will be obtained 

O(x) = a, J z - 
P(Y) 

O .\/(x -y>; dyT (12) 

@(x)=K(x,O)--kJ:lnI:$Ip(y)dy, (13) 

where (see equation (3)) the following designation 
is introduced 

%/=+, = tl,=-, Ez O(x). (14) 

Subject the system (12, 13) to the generalized 
Fourier sine-transform [6] : 

h(u) = liliO S,” f(x) e-Ox sin a x dx. (14a) 

It is possible to show the validity of changing 
the order of integrations shown. Finally, 
eliminating O(x), a singular equation for p,(u) is 
obtained :t 

[ 1 l/&(4 1 + $a ps(a) = ___-- - 
a 

(15) 

For equation (2) with conditions (7) and (9) here K,(U) G K,(cc, 0) (see (11)); a = a,z/?r/2, 
we have f designates the Cauchy principal value of inte- 

GA = K(x,Y) 
gral. In equation (15) the change of variables is 
allowable 

1 * -- J 277 0 In (x + xxk$ p(x’) dx’ (x - x32 + y ’ (lo) a = 2, Ps(4 = q45). (16) 
where 

K(x,y) = 1 J 
m Equation (15) is reduced to the form 

= 0 
Ks(u,y) sin a x da, (lla) 

&(a,~) = 2 J m cw(%P) ( > 
1 + & ~(5) = g(5) + f 

J 

* 947) 
Z-77 d7, (17) o 

97 ___ ~0s 18 Y d/Z o a2 + P2 (llb) where 

&Q) = So” %(a, -Y) cos B Y dy, (llc) g(5) = P4KM/Sla2) 
W3) 

qJu,y) = f J 
a2 * 

O” Q(x,y) sin CC x dx. (114 s 0 The general theory of equations of such a type 

It is seen from (8) and (10) that if the normal 
as (17)-singular integral equations with the 

derivative on the boundary p(x) is known, then 
&u&y kernel-is considered in [fj, 91. 

the problem is reduced to quadratures. Taking __ t The kernels analogous to those of the integral 
equation (15) are considered in the Kramers-Kronig 

* As suggested by Professor A. A. Gukhman. transform theory (see, for example, [7D. 
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Subjecting equation (17) to the Mellin trans- 
form and introducing the designation p(x) = lim 2 

s 

a, 

o-tar 0 
e-O= cp(a4a2) sin a x da. 

@Cd = Jo” p,(EP1 dt O(x) can be found, for example, from (12). 

and For illustration, the results will be given when 
the source has the form: 

E(s) = Jo” g(OP1 df, 

we get Q<x, ~9 = Qo ‘7. (23) 

(1 + CC? r.+JXs) + @(s - 2) = g(s), (19) 
The general solution of equation (19) is obtained 

in the range 0 < Re(s) < 1. by the method given above 
The latter difference equation for @(s) can be 

reduced to another difference equation with 6(s) 
constant coefficients. Omitting simple computa- 

f&s) = - 
4” . sin n (s + t) 

tions the result is 
,&s-3/4 

q(s) = B(S) - &E(s - l), ’ 1 + JF2) b114 ’ sin r (s + $i (24) 

2 < Re(s) < 1, (20) where 

where 
q. _$? 7r 

c(s) = s2 . SST&) m 
s *2/1) 

- a3, 
2 

b = w2 . a4 

and C(S) is the arbitrary function satisfying 

-- ;. Y;;+:jl(+&)-&2 w(s) = -s(s - 4). 

Apparently we are to take G(S) = 0. Then 

’ sin ~~~“+” t) g(’ - S) + tg(s - %)’ (21) 
v(6) = [1’4. 2; r y ym 

0 
q(s - 44 $f 

The general solution of equation (20) has the 
100 

form : 

f4-9 = ; .m + 
s 

0 $$V, (24 

= 1 + ;;2) b1i4 ’ 
;+;, /$<a<ll 

and for p(x) and O(x) we get, respectively: 

where 

andP(s) is the arbitrary function 
condition 

f(S) = -f($ + 1). 

p(x) = 

<a< 11, 
x ___1__ m dasinax -__- 

satisfying the 1 + 2//(2w) a J o 2 + 02 da, (25) 

The function f(s) in (22) is chosen to satisfy 
original equation (19). 

2/(2w) a 

s 

m sin a x 

q(s) being determined, the problem is solved 
Xl+~(2w)a (26) o da ($ + &$, da* 

and reduced to the performance of the inverse Note, that the integrals in formulae (25) and 
Mellin transform. The unknown function p(x) (26) converge uniformly relative to x, which 
will be determined: makes the study of their properties easier. 
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3. HEAT TRANSFER ICN A LAMINAR BOUNDARY 
LAYER OF FLOW ROUND A THIN PLATE WITH 

~~ I-EAT SOURCES 

Consider heat transfer between a thin plate 
with internal heat sources and a laminar boun- 
dary layer of incompressible liquid formed on it. 
Let t&Y) and 0(x,Y) be temperatures of the 
plate and liquid, respectively, and z&y) and 
v(x,Y) the components of the velocity of a 
liquid along the axes x and Y (Fig. 2). The system 
of equations for the considered problem is: 

(27) 

with the boundary conditions 

UIU-0 = v~y-~, Ul~aY = u. (29) 

0 

-2h 

U- 

The exact Blasius solution is known [lo] for 
equations (27, 28) with boundary conditions 
(29) describing the laminar boundary layer on a 
flat plate. The problem is similar [l l-131; the 
variable r] = y/2 ~/(U[VX) being introduced, 
it is reduced to the ordinary differential equation 

]ErG. 2. 

For fluid t~perature we have with boundary con~tions 

(30) 

If we take the temperature of the incoming 
liquid as zero, then 

(a) 01 PO = 0, (b) Bly;,m = 0. (31) 

For the plate 

Restricting ourselves to the sources of the 
finite power, for which 

f C?(X,Y) dr < 00 (33) 

(integration over the whole volume of the plate). 
All given below is applicable for any source 
satisfying condition (33). To illustrate, consider 
the source of the form: 

Q(w) = Q,, . 4 - N, --2/z 9 Y G 0, (34) 

where 

‘(X) = 
c 

1 X>O 
ox<o* 

Due to the s~et~ of the problem 

at 
&J = I 0. 

y--74 
(35) 

On the leading edge of the plate we take 

tl,Xo = 0. (31 

The latter condition is unessential and can be 
replaced by another one. 

Finally, write out the plate-liquid boundary 
conditions: 

%=+o = &#=-0, (37) 

ae I 
at 

- & 6 y=fa = --& Fyy __*’ (38) 

(39) 

f(0) -f’(O) = 0, f’(co) = 2, 

where f(q) is bound with the flow function 
$(KY)lU = &VY, v = -&j/&l by the relation 
# = d(vUx)f. The solution of equation (39) can 
be obtained numerically or in the form of power 
series by r). The latter has the form 

here c =j+“(O) = 1.328. 

(40) 
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Let us turn to equation (30). 
new indevendent variable J, 

We introduce a The functionsf,( A) andf,( A) are determined from 
(flow function) 

instead of; following [13]. Since 4 is determined 
the boundary conditions. Condition (45a) gives 
f,(h) = -fi(A) = f(A) and it follows from (45b) 

to within the arbitrary constant, we take it that thatf(co) = 0. 
when y is equal to zero then # = 0 as well. Introducing the designation 
Equation (30) and condition (38) will be written : 

eI,=+o = O(x) (47) 

where 

p(x) - - g 
?I 
=. and K = 2. 

(41) and making use of condition (44) it is easy to get 

p(x) = -& J~#(u)exp[-~-(~~‘4]$4, 

If the Prandtl number is not low, then we may (49) 
restrict ourselves to the first term in expansion where 
(40). Introducing a new variable [14] 

z = $ $314, Q(u) =f ( $u3J8) 2 a = -4+iy 

we get for (41, 42 and 31), respectively, 3513 
~~_ 

4 i a9 _ x1:4'e =a28 + _ _ 
b = 8r(+)XKjl?1'3 . 

P ax a23 32 . az 9 (43) Finally, eliminate 4(u) from equations (48, 
49). Then we have 

(44) 
O(x) = Y 

s 
(50) 

(a) elr=o = 0, (b) %=m = 0, (45) here 

where 3a 

Consider equation (32). The solution of it 

Equation (43) was studied in [ 151; the solution expressed through p(x) at conditions (34436) 

has the form: may easily be obtained by the standard methods. 
We shall directlv write the exnression for the 

32113 
cd = 2F . exp 

323 

( ~-1 4j?x3’4 

temperature of the plate surfaceA [see (37, 38 and 
47)] : 

(46) 
%TY)P(Y) dy 0 
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(52) 

Thus, the problem is brought to the solution 
of the system of integral equations (50, 51) for 
unknown functions O(x) and p(x). The know- 
ledge of any of them reduces the determination 
of B(x,y) and b(x,y) to the quadratures. 

The system (50, 51) cannot be solved exactly, 
and moreover, the exact solution need not be 
given, since the equations of the boundary layer 
theory (27-29) are applicable only at a distance 
from the leading edge of the plate; otherwise the 
complete Navier-Stokes equations should be 
used. Consequently, the solution is to be sought 
only in the region x/h > 1. 

The latter remark allows basic simplification 
of equation (51). Accurate within the terms 

7TX 
- const. exp - -. 

( 1 h 

we immediately obtain 

O(x) = $ x (I - ;) E(I - x) 
s 

Q, l2 + K, . yj “(X - 1) - & s m G(x,Y)P~~) dy 

+I “1, 1 -exp -su [ (I: “r;“!)] p(Y)dY.(53) 

Further, the last term in the right-hand side of 
equation (53) can be given in the form: 

;/;ln[l -exp(-n&p)] pCy)dY 

==~Cln[l -exp(-IT(Yl “x)] 

x p[dy+W~+; :ln 
s i 

1 

- exP (- FlYi)] &(Y + l)]dY. 

The first of these two integrals can be easily 
evaluated at high x/h by the Laplace method. 
It turns out to be equal to 

h 
- qexp ( > -F p(2x) 

and should be neglected. For the evaluation of 
the second integral we show that at 

-$ln [l -exp(-ylyl)] 

has the limit of S(Y) in the sense of distribution. 
It is necessary to show [16] for this, firstly, that 
ji: FCy ; x/h) dy is limited from above by a constant 
independent of a, b and x/h at any a and b, 
Really, since the function F(Y; x/h) is non- 
negative, then 

Secondly, at any a and b different from zero 

0 ata<b<OandO<a<b 

= 1 ata<O<b. 

should be fulfilled, which is easy to check. 
Using the latter remark and eliminating O(X) 

from (50) and (53) we obtain the equation for 
P(X) : 

h 
- pIx). (54) 

It is easy to see from equation (54) that P(X) 
depends on the dimensionless variable 

Rei12Prlj3 x x 
u ‘7z 

where Re, = Ux/v is the local Reynolds number 
and Pr = v/x is the Prandtl number. Since Pr and 
Re, are not low, then it is sufficient to fmd the 
asymptotic solution of equation (54) due to the 
condition x/h $ 1. For this purpose, having 
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subjected equation (54) to the Mellin transform 
we obtain the difference equation 

(p(s) = ~-0” p(x)x”-’ dx) : 

r(2 - $3) - 
VG)Y * qg _ ‘$) p(s - &) = 

QO Is+1 
-- 

KS - s(s - 1) (S + 1) 

1 1 
+ h * s(s - 1) 

---JY(s+ l)-;p(S- l), (55) 

where 

O<Re(s)<l. 

According to the method of the asymptotic 
solution of some integral equations given in the 
Appendix a new function q(s) will be sub- 
stituted for D(S) : 

p($ s - 1) = J?? (s)pl(s), IRe(s) > 01, (56) 

where 

a($ = JVSN2S + W(s + W(s + WYS + 2) 
r(;- - s) 

(57) 
(note, that D(S) is analytical in the half-plane 

Re(s) > 0). The proof of the fact that the 
function v(x) may be looked for in the form of 
expansion of x inverse power will be omitted, 
and the asymptotic expansion for p(x) and 
O(x) will be given directly. For the sake of 
brevity we shall deduce the results only for the 
physically interesting region x < I where the 
heat release is going on; 1 is supposed to be 
sufficiently large, so that inequalities are taking 
place 

hand K 
Re$/aPr1/3 

.h<x<l. (58) 

m 

P(X) = Q 
c 

$,$($n + %), (59) 

where z(s) is determined by the relation (57) and 

Q2S)QS + X(&r) = -~- W(S + W(s + W(s + 2) 
r(3 - S) 

The coefficients a, satisfy the recurrence relation 

UK-O(K<O); 

32 
ao = 2 * 5 * 7 F(g)r(qq 

In equation (62) the following designations are used: 

g.h. 
s 

= 31,2,...1; 

i (62) 

J 

R,(s) = 
r(2S + *)r(2s + 2) r(S + f)Q + 1) F(s + a> 

r($ - S) 
- . s, 

x,(s) = r(2s + z$)r(2s + 6)Q + YW~ + 3)Q + Y) . s, 
r(1 - S) (63) 

G(S) = 
q2s + l)Ws + W(s + isi)% + W(s + 2) (s _ ‘$) 

m - 3) 9 7 

H = $r(+)hy, B = h/4r(&)y. ! 
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From (62) and (63) the coefficients a,, are easily evaluated. We shall write out in an explicit form the 
first terms of the expansions (59) and (60) 

1 m a K h 2613 . 32/SC1/3 r(s) Re:/2P,.1/3 . ; [ 1 
- 

21'3.;4,3c2,3 E14R&(;)1 + o(1~x7'")} (64) 

O(x) = + . h ReI;~Prl,3 . x . 8 x 
.CW 

Hence, for the coefficient of heat transfer and for the local Nusselt number it is easy to get: 

&i/2. J+l/3 

31'3 x - 25/3. 5. c1/3 r(4) [=)I" &(;r Re&rl,3 ; + 0(1/x4), (66) 

N% 
Re:/2= 

3aJ3cli3 a) a prl/3 _ 

-F- r(;) il 1 25,3 ?;: cl,3 [;!I" &;irl,3 (;)' +' (;t)' (67) 

In conclusion we shall give once more the 
range of application of the results obtained: 

(a) inequalities (58), 
co>pr > 1, 
(c) Re, < 3.105. 
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APPENDIX 

A number of problems of mathematical 
physics (including the conjugated problems 
considered above, some other problems of the 
transfer theory and dispersion relations of 
the quantum field theory) are resolved by the 
integral equations of the form: 

&)~(x) = g(x) + E’ ~(x/~)x~u~~(~) dy, (Al) 

where a(x) is the finite sum* 

* a(x) can also be a linear differential operator of 
such a type as Fgxyg (dnK/dxnx). Thus, equation (Al) 

can be integro-differential too. 
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u(x) = z UKXYK. (Al’) 
K 

Often it is sufficient to get the asymptotic 
expansion of the solution of this equation. 

If as x + a3 the kernel k(x) does not 
decrease more quickly than any power of x, then 
it is impossible to seek y(x) directly in the form 
of an asymptotic series. 

With the help of the method given below the 
asymptotic solution of equation (Al) may be 
obtained for many cases at high x. 

Subjecting equation (Al) to the Mellin trans- 
form we obtain the finite difference equation 

X UK% + ylr) = G(s) 
R 

+ K(s + a)@% + a + B + 1), (42) 

taking place in some band of the complex plane 
s. Without restriction of the generality we may 
consider that 0 < Re(s) < u where 0 is some 
positive number. 

In equation (A2) we designated 

CD(s) = J,” v(x)x”-’ dx 

and in an analogous way for the other functions. 
Introducing a new unknown function Y(s) 

instead of CD(S): 

@(s + 8) = Q(s)Y(s) IRe(s) > 01, (A3) 

where 6 is the smallest number out of YK and 
a + fl + 1. Equation (A2) will take the form 

$ @&(s + YK - a)Y(s + YK - 8) 

= G(s) + K(s + 4% + a + B - 6 + 1) 

x Vs + a i-B - 6 + 1) (A4) 

The function Q(s) is chosen so that, firstly, the 
inverse Mellin transforms of Q(s) as well as of 
functions Q(s + yk - S) and 

K(s + c&+ + a + B - 6 + 1), 

being the coefficients in equation (A4) could 
exist. Secondly, the inverse Mellin transforms 
of all the functions enumerated must diminish 
exponentially at x -f co. To fulfill the latter 
condition it is necessary that Q(s), all the 
Q(s + YK - S) and 

K(s + c&Q + a + B - 6 + 1) 

have no singularities in the half-plane Re(s) > 0. 

Whether it is sufficient depends on the right 
choice of .Q(.s). 

Now we may seek the function 4(x) in the 
form of asymptotic expansion, for example, 

and obtain the recurrence relations for c, from 
equation (A4). The unknown function v(x) is 
easily determined from equation (A3). 

For concrete integral equations it is not 
difficult to select the function Q(s) so that it may 
have the required analytical properties. 

As an example consider a simple Volterra 
equation of the second kind 

~(4 = 1 - s * cp(Y) I___ o d(x _ y> dy, (A5) 

which belongs to the class of equations (Al). 
Equation (A5) is taken only for the sake of 
illustration, since by the standard method it is 
easy to get its exact solution with the help of the 
Laplace transformation 

v(x) = exp (fix) erfc [d/(41, 
where 

646) 

erfc (x) = $ 
s 

io 

= Z 
exp (-P) dt. 

Briefly, so as not to introduce the generalized 
(half-plane) Mellin transforms, we shall present 
a nonuniform term of equation (A5), for 
example, in the form of lim exp (-E~/x) and 

E-+0 

turn to the limit only at the end. 
From equation (A5) we get 

limo 2 <-2”r(2s) - CD(s) 

=+r(ls) 
r(* - s, @(,s + i), 

Introduce instead of Q(s) 

CD(s) = 

10 < Re(s) < &I (A7) 

a new function 

IRe(s) > 01. (As) 

Upon elementary transformations equation (A7) 
will acquire the form 
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-~li02C2T(-S) - T$ Y(S) = 
(A12) 

22/Gs + 3)W + +), P(s) > 01. (A9) 
n=O 

From (A8 and A9) or (A10 and All) we get 
Equations (A8 and A9) are equivalent, respec- a = b = 3 and c, will satisfy the relation 

and 

2+ JoEi( 
at 

= 24(77x) J O” exp (-JJ)+ 0 ; ‘f . Finally, 

(All) oo 
0 

Here J,(x) is the Bessel function of the zero 
F(X) = 

c 

c2n __ 
Xn+l/2 * 

wn + lF(n + 8. (A14) ~~ 
m - 4 

order, K,,(x) is the Macdonald function of the 
n=O 

zero order and E(x) is the integro-exponential It is easy to check that the series (A14) the 
function. coefficients of which are determined from equa- 

Now, it is evident that t/(x) can be sought in tion (A13) coincide with the known asymptotic 
the form of the asymptotic series expansion of the solution of (A6). 


